在 Kubernetes 中手动部署 Prometheus

未分类

从今天开始我们就和大家一起来学习 Kubernetes 中监控系统的搭建,我们知道监控是保证系统运行必不可少的功能,特别是对于 Kubernetes 这种比较庞大的系统来说,监控报警更是不可或缺,我们需要时刻了解系统的各种运行指标,也需要时刻了解我们的 Pod 的各种指标,更需要在出现问题的时候有报警信息通知到我们。

在早期的版本中 Kubernetes 提供了 heapster、influxDB、grafana 的组合来监控系统,所以我们可以在 Dashboard 中看到 heapster 提供的一些图表信息,在后续的版本中会陆续移除掉 heapster,现在更加流行的监控工具是 prometheus,prometheus 是 Google 内部监控报警系统的开源版本,是 Google SRE 思想在其内部不断完善的产物,它的存在是为了更快和高效的发现问题,快速的接入速度,简单灵活的配置都很好的解决了这一切,而且是已经毕业的 CNCF 项目。

这里推荐一本书了解 Goolge 运维的秘密:《SRE: Google运维解密》

简介

Prometheus 最初是 SoundCloud 构建的开源系统监控和报警工具,是一个独立的开源项目,于2016年加入了 CNCF 基金会,作为继 Kubernetes 之后的第二个托管项目。

特征

Prometheus 相比于其他传统监控工具主要有以下几个特点:

  • 具有由 metric 名称和键/值对标识的时间序列数据的多维数据模型
  • 有一个灵活的查询语言
  • 不依赖分布式存储,只和本地磁盘有关
  • 通过 HTTP 的服务拉取时间序列数据
  • 也支持推送的方式来添加时间序列数据
  • 还支持通过服务发现或静态配置发现目标
  • 多种图形和仪表板支持

组件

Prometheus 由多个组件组成,但是其中许多组件是可选的:

  • Prometheus Server:用于抓取指标、存储时间序列数据
  • exporter:暴露指标让任务来抓
  • pushgateway:push 的方式将指标数据推送到该网关
  • alertmanager:处理报警的报警组件
  • adhoc:用于数据查询

大多数 Prometheus 组件都是用 Go 编写的,因此很容易构建和部署为静态的二进制文件。

架构

下图是 Prometheus 官方提供的架构及其一些相关的生态系统组件:

未分类

整体流程比较简单,Prometheus 直接接收或者通过中间的 Pushgateway 网关被动获取指标数据,在本地存储所有的获取的指标数据,并对这些数据进行一些规则整理,用来生成一些聚合数据或者报警信息,Grafana 或者其他工具用来可视化这些数据。

安装

由于 Prometheus 是 Golang 编写的程序,所以要安装的话也非常简单,只需要将二进制文件下载下来直接执行即可,前往地址:https://prometheus.io/download 下载我们对应的版本即可。

Prometheus 是通过一个 YAML 配置文件来进行启动的,如果我们使用二进制的方式来启动的话,可以使用下面的命令:

$ ./prometheus --config.file=prometheus.yml

其中 prometheus.yml 文件的基本配置如下:

global:
  scrape_interval: 15s  
  evaluation_interval: 15s
rule_files:
  # - "first.rules"
  # - "second.rules"
scrape_configs:
  - job_name: prometheus    
    static_configs:
      - targets: ['localhost:9090']

上面这个配置文件中包含了3个模块:global、rule_files 和 scrape_configs。

其中 global 模块控制 Prometheus Server 的全局配置:

  • scrape_interval:表示 prometheus 抓取指标数据的频率,默认是15s,我们可以覆盖这个值
  • evaluation_interval:用来控制评估规则的频率,prometheus 使用规则产生新的时间序列数据或者产生警报

rule_files 模块制定了规则所在的位置,prometheus 可以根据这个配置加载规则,用于生成新的时间序列数据或者报警信息,当前我们没有配置任何规则。

scrape_configs 用于控制 prometheus 监控哪些资源。由于 prometheus 通过 HTTP 的方式来暴露的它本身的监控数据,prometheus 也能够监控本身的健康情况。在默认的配置里有一个单独的 job,叫做prometheus,它采集 prometheus 服务本身的时间序列数据。这个 job 包含了一个单独的、静态配置的目标:监听 localhost 上的9090端口。prometheus 默认会通过目标的/metrics路径采集 metrics。所以,默认的 job 通过 URL:http://localhost:9090/metrics采集 metrics。收集到的时间序列包含 prometheus 服务本身的状态和性能。如果我们还有其他的资源需要监控的话,直接配置在该模块下面就可以了。

由于我们这里是要跑在 Kubernetes 系统中,所以我们直接用 Docker 镜像的方式运行即可。

为了方便管理,我们将所有的资源对象都安装在kube-ops的 namespace 下面,没有的话需要提前安装。

为了能够方便的管理配置文件,我们这里将 prometheus.yml 文件用 ConfigMap 的形式进行管理:(prometheus-cm.yaml)

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config  
  namespace: kube-ops
data:
  prometheus.yml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
      - targets: ['localhost:9090']

我们这里暂时只配置了对 prometheus 的监控,然后创建该资源对象:

$ kubectl create -f prometheus-cm.yaml
configmap "prometheus-config" created

配置文件创建完成了,以后如果我们有新的资源需要被监控,我们只需要将上面的 ConfigMap 对象更新即可。现在我们来创建 prometheus 的 Pod 资源:(prometheus-deploy.yaml)

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: prometheus  
  namespace: kube-ops  
  labels:
    app: prometheus
spec:
  template:
    metadata:
      labels:
        app: prometheus    
    spec:
      serviceAccountName: prometheus      
      containers:
      - image: prom/prometheus:v2.4.3        
        name: prometheus        
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-admin-api"  # 控制对admin HTTP API的访问,其中包括删除时间序列等功能
        - "--web.enable-lifecycle"  # 支持热更新,直接执行localhost:9090/-/reload立即生效
        ports:
        - containerPort: 9090
          protocol: TCP          
          name: http        
        volumeMounts:
        - mountPath: "/prometheus"
          subPath: prometheus          
          name: data        
        - mountPath: "/etc/prometheus"
          name: config-volume        
        resources:
          requests:
            cpu: 100m            
            memory: 512Mi          
          limits:
            cpu: 100m            
          memory: 512Mi      
      securityContext:
        runAsUser: 0
      volumes:
      - name: data        
        persistentVolumeClaim:
          claimName: prometheus      
      - configMap:
          name: prometheus-config        
        name: config-volume

我们在启动程序的时候,除了指定了 prometheus.yml 文件之外,还通过参数storage.tsdb.path指定了 TSDB 数据的存储路径、通过storage.tsdb.retention设置了保留多长时间的数据,还有下面的web.enable-admin-api参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload就会立即生效,所以一定要加上这个参数。

未分类

我们这里将 prometheus.yml 文件对应的 ConfigMap 对象通过 volume 的形式挂载进了 Pod,这样 ConfigMap 更新后,对应的 Pod 里面的文件也会热更新的,然后我们再执行上面的 reload 请求,Prometheus 配置就生效了,除此之外,为了将时间序列数据进行持久化,我们将数据目录和一个 pvc 对象进行了绑定,所以我们需要提前创建好这个 pvc 对象:(prometheus-volume.yaml)

apiVersion: v1
kind: PersistentVolume
metadata:
  name: prometheus
spec:
  capacity:
    storage: 10Gi  
  accessModes:
  - ReadWriteOnce  
  persistentVolumeReclaimPolicy: Recycle  
  nfs:
    server: 10.151.30.57    
    path: /data/k8s

---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus  
  namespace: kube-ops
spec:
  accessModes:
  - ReadWriteOnce  
  resources:
    requests:
      storage: 10Gi

我们这里简单的通过 NFS 作为存储后端创建一个 pv、pvc 对象:

$ kubectl create -f prometheus-volume.yaml

除了上面的注意事项外,我们这里还需要配置 rbac 认证,因为我们需要在 prometheus 中去访问 Kubernetes 的相关信息,所以我们这里管理了一个名为 prometheus 的 serviceAccount 对象:(prometheus-rbac.yaml)

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus  
  namespace: kube-ops

---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes  
  - services  
  - endpoints  
  - pods  
  - nodes/proxy  
  verbs: ["get", "list", "watch"]
- apiGroups: [""]
  resources:
  - configmaps  
  verbs: ["get"]
- nonResourceURLs: ["/metics"]  # 对非资源型 endpoint metrics 进行 get 操作
  verbs: ["get"]

---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io  
  kind: ClusterRole  
  name: prometheus
subjects:
- kind: ServiceAccount  
  name: prometheus  
  namespace: kube-ops

由于我们要获取的资源信息,在每一个 namespace 下面都有可能存在,所以我们这里使用的是 ClusterRole 的资源对象,值得一提的是我们这里的权限规则声明中有一个nonResourceURLs的属性,是用来对非资源型 metrics 进行操作的权限声明,这个在以前我们很少遇到过,然后直接创建上面的资源对象即可:

$ kubectl create -f prometheus-rbac.yaml
serviceaccount "prometheus" created
clusterrole.rbac.authorization.k8s.io "prometheus" created
clusterrolebinding.rbac.authorization.k8s.io "prometheus" created

还有一个要注意的地方是我们这里必须要添加一个securityContext的属性,将其中的runAsUser设置为0,这是因为现在的 prometheus 运行过程中使用的用户是 nobody,否则会出现下面的permission denied之类的权限错误:

level=error ts=2018-10-22T14:34:58.632016274Z caller=main.go:617 err="opening storage failed: lock DB directory: open /data/lock: permission denied"

现在我们就可以添加 promethues 的资源对象了:

$ kubectl create -f prometheus-deploy.yaml
deployment.extensions "prometheus" created
$ kubectl get pods -n kube-ops
NAME                          READY     STATUS    RESTARTS   AGE
prometheus-6dd775cbff-zb69l   1/1       Running   0          20m
$ kubectl logs -f prometheus-6dd775cbff-zb69l -n kube-ops......level=info ts=2018-10-22T14:44:40.535385503Z caller=main.go:523 msg="Server is ready to receive web requests."

Pod 创建成功后,为了能够在外部访问到 prometheus 的 webui 服务,我们还需要创建一个 Service 对象:(prometheus-svc.yaml)

apiVersion: v1
kind: Service
metadata:
  name: prometheus  
  namespace: kube-ops  
  labels:
    app: prometheus
spec:
  selector:
    app: prometheus  
  type: NodePort  
  ports:
  - name: web      
    port: 9090
    targetPort: http

为了方便测试,我们这里创建一个NodePort类型的服务,当然我们可以创建一个Ingress对象,通过域名来进行访问:

$ kubectl create -f prometheus-svc.yamlservice "prometheus" created
$ kubectl get svc -n kube-ops
NAME         TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)                          AGE
prometheus   NodePort   10.111.118.104   <none>        9090:30987/TCP                   24s

然后我们就可以通过http://任意节点IP:30987访问 prometheus 的 webui 服务了。

未分类

为了数据的一致性,prometheus 所有的数据都是使用的 UTC 时间,所以我们默认打开的 dashboard 中有这样一个警告,我们需要在查询的时候指定我们当前的时间才可以。然后我们可以查看当前监控系统中的一些监控目标:

未分类

由于我们现在还没有配置任何的报警信息,所以 Alerts 菜单下面现在没有任何数据,隔一会儿,我们可以去 Graph 菜单下面查看我们抓取的 prometheus 本身的一些监控数据了,其中- insert metrics at cursor -下面就是我们搜集到的一些监控数据指标:

未分类

比如我们这里就选择scrape_duration_seconds这个指标,然后点击Execute,如果这个时候没有查询到任何数据,我们可以切换到Graph这个 tab 下面重新选择下时间,选择到当前的时间点,重新执行,就可以看到类似于下面的图表数据了:

未分类

除了简单的直接使用采集到的一些监控指标数据之外,这个时候也可以使用强大的 PromQL 工具,PromQL其实就是 prometheus 便于数据聚合展示开发的一套 ad hoc 查询语言的,你想要查什么找对应函数取你的数据好了。

使用Python和Flask编写Prometheus监控

Installation

pip install flask
pip install prometheus_client

Metrics

Prometheus提供4种类型Metrics:Counter, Gauge, Summary和Histogram

Counter

Counter可以增长,并且在程序重启的时候会被重设为0,常被用于任务个数,总处理时间,错误个数等只增不减的指标。

import prometheus_client
from prometheus_client import Counter
from prometheus_client.core import CollectorRegistry
from flask import Response, Flask
app = Flask(__name__)
requests_total = Counter("request_count", "Total request cout of the host")
@app.route("/metrics")
def requests_count():
    requests_total.inc()
    # requests_total.inc(2)
    return Response(prometheus_client.generate_latest(requests_total),
                    mimetype="text/plain")
@app.route('/')
def index():
    requests_total.inc()
    return "Hello World"
if __name__ == "__main__":
    app.run(host="0.0.0.0")

运行改脚本,访问youhost:5000/metrics

# HELP request_count Total request cout of the host
# TYPE request_count counter
request_count 3.0

Gauge

Gauge与Counter类似,唯一不同的是Gauge数值可以减少,常被用于温度、利用率等指标。

import random
import prometheus_client
from prometheus_client import Gauge
from flask import Response, Flask
app = Flask(__name__)
random_value = Gauge("random_value", "Random value of the request")
@app.route("/metrics")
def r_value():
    random_value.set(random.randint(0, 10))
    return Response(prometheus_client.generate_latest(random_value),
                    mimetype="text/plain")
if __name__ == "__main__":
    app.run(host="0.0.0.0")

运行改脚本,访问youhost:5000/metrics

# HELP random_value Random value of the request
# TYPE random_value gauge
random_value 3.0

Summary/Histogram

Summary/Histogram概念比较复杂,一般exporter很难用到,暂且不说。

PLUS

LABELS

使用labels来区分metric的特征

from prometheus_client import Counter
c = Counter('requests_total', 'HTTP requests total', ['method', 'clientip'])
c.labels('get', '127.0.0.1').inc()
c.labels('post', '192.168.0.1').inc(3)
c.labels(method="get", clientip="192.168.0.1").inc()

REGISTRY

from prometheus_client import Counter, Gauge
from prometheus_client.core import CollectorRegistry
REGISTRY = CollectorRegistry(auto_describe=False)
requests_total = Counter("request_count", "Total request cout of the host", registry=REGISTRY)
random_value = Gauge("random_value", "Random value of the request", registry=REGISTRY)

Kubernetes之利用prometheus监控K8S集群

prometheus它是一个主动拉取的数据库,在K8S中应该展示图形的grafana数据实例化要保存下来,使用分布式文件系统加动态PV,但是在本测试环境中使用本地磁盘,安装采集数据的agent使用DaemonSet来部署,DaemonSet的特性就是在每个node上部署一个服务进程,这一切都是自动的部署。

此处只讲如何用prometheus来监控K8S集群,关于prometheus的知识参考官方文档。

部署前提: 准备好所需要的文件

$ ls -l 
Prometheus/prometheus#:/data/Prometheus/prometheus# ls -l 
total 28
drwxr-xr-x 2 root root 4096 Jan 15 02:53 grafana
drwxr-xr-x 2 root root 4096 Jan 15 03:11 kube-state-metrics
-rw-r--r-- 1 root root   60 Jan 14 06:48 namespace.yaml
drwxr-xr-x 2 root root 4096 Jan 15 03:22 node-directory-size-metrics
drwxr-xr-x 2 root root 4096 Jan 15 03:02 node-exporter
drwxr-xr-x 2 root root 4096 Jan 15 02:55 prometheus
drwxr-xr-x 2 root root 4096 Jan 15 02:37 rbac

$ ls grafana/
grafana-configmap.yaml  grafana-core-deployment.yaml  grafana-import-dashboards-job.yaml  grafana-pvc-claim.yaml  grafana-pvc-volume.yaml  grafana-service.yaml

$ ls prometheus/
configmap.yaml  deployment.yaml  prometheus-rules.yaml  service.yaml

grafana和 prometheus 都是部署文件,node-exporter、kube-state-metrics、node-directory-size-metrics这三个是采集器,相当于prometheus的agent

文件准备好了,现在开始一步一步来部署:

1、创建所需Namespace

因为prometheus 部署的所有的deploy、pod、svc都是在monitoring完成的,所以需要事先创建之。

 $ cat namespace.yaml 
 apiVersion: v1
 kind: Namespace
 metadata:
  name: monitoring

 $ kubectl create -f namespace.yaml 
 namespace "monitoring" created

2、创建grafana的pv、 pvc

grafana# cat grafana-pvc-volume.yaml 
kind: PersistentVolume
apiVersion: v1
metadata:
  name: grafana-pv-volume
  labels:
    type: local
spec:
  storageClassName: grafana-pv-volume
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Recycle
  hostPath:
    path: "/data/volume/grafana"

grafana# cat grafana-pvc-claim.yaml 
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: grafana-pvc-volume
  namespace: "monitoring"
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi
  storageClassName: grafana-pv-volume

$ kubectl create -f grafana/grafana-pvc-volume.yaml -f grafana/grafana-pvc-claim.yaml 
persistentvolume "grafana-pv-volume" created
persistentvolumeclaim "grafana-pvc-volume" created

$ kubectl get pvc -n monitoring
NAME          STATUS           VOLUME       CAPACITY   ACCESS MODES   STORAGECLASS     AGE
grafana-pvc-volume   Bound     grafana-pv-volume   10Gi       RWO     grafana-pv-volume   52s

状态bound已绑定到了 grafana-pv-volume

3、创建grafana应用,这些应用都是第三方的,都会有自已的配置,通过configmap来定义

grafana# ls
grafana-configmap.yaml  grafana-core-deployment.yaml  grafana-import-dashboards-job.yaml  grafana-pvc-claim.yaml  grafana-pvc-volume.yaml  grafana-service.yaml
grafana# kubectl create -f ./    #grafana目录下所有文件都创建
configmap "grafana-import-dashboards" created
deployment "grafana-core" created
job "grafana-import-dashboards" created
service "grafana" created 


grafana# kubectl get deployment,pod -n monitoring 
NAME                  DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deploy/grafana-core   1         1         1            0           1m

NAME                              READY     STATUS              RESTARTS   AGE
po/grafana-core-9c7f66868-7q8lx   0/1       ContainerCreating   0          1m
运行po/grafana-core 容器时会下载镜像: grafana/grafana:4.2.0

grafana创建的应用 简单的自已描述了下:

      grafana-pv-volume=/data/volume/grafana =10G    
      grafana-pvc-volume=5G--->grafana-pv-volume
      ---configmap=grafana-import-dashboards     
      Job=grafana-import-dashboards

      Deployment=grafana-core     replicas: 1  containers=grafana-core   mount:  grafana-pvc-volume:/var
      service=grafana     port: 3000  = nodePort: 30161     (3000是grafana服务的默认端口)

4、现在grafana的核心应用已部署好了,现在来部署prometheus的RBAC

prometheus/rbac# ls
grant_serviceAccount.sh  prometheus_rbac.yaml
#先创建RBAC文件:
prometheus/rbac# kubectl create -f prometheus_rbac.yaml 
clusterrolebinding "prometheus-k8s" created
clusterrolebinding "kube-state-metrics" created
clusterrole "kube-state-metrics" created
serviceaccount "kube-state-metrics" created
clusterrolebinding "prometheus" created
clusterrole "prometheus" created
serviceaccount "prometheus-k8s" created
prometheus/rbac#

5、创建prometheus的deloyment,service

prometheus/prometheus# ls
configmap.yaml  deployment.yaml  prometheus-rules.yaml  service.yaml
prometheus/prometheus# 
在configmap.yaml中要注意的是在1.7以后,获取cadvsion监控pod等的信息时,用的是kubelet的4194端口,
注意以下这段:这是采集cadvision信息,必须是通过kubelet的4194端口,所以Kubelet必须监听着,4194部署了cadvsion来获取pod中容器信息
prometheus/prometheus#cat configmap.yaml
 # https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml#L37
      - job_name: 'kubernetes-nodes'
        tls_config:
          ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
        kubernetes_sd_configs:
          - role: node
        relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:10255'
            target_label: __address__
      - job_name: 'kubernetes-cadvisor'
        scheme: https
        tls_config:
          ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
        bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
        kubernetes_sd_configs:
          - role: node
        relabel_configs:
        - action: labelmap
          regex: __meta_kubernetes_node_label_(.+)
        - target_label: __address__
          replacement: kubernetes.default.svc.cluster.local:443
        - source_labels: [__meta_kubernetes_node_name]
          regex: (.+)
          target_label: __metrics_path__
          replacement: /api/v1/nodes/${1}:4194/proxy/metrics

      # https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml#L79

prometheus-rules.yaml 这是它的发现规则文件

deployment.yaml service.yaml 这两个是部署的文件, deployment部署中资源限制建议放大一点

现在部署prometheus目录下所有文件:

prometheus/prometheus# kubectl create -f ./
configmap "prometheus-core" created
deployment "prometheus-core" created
configmap "prometheus-rules" created
service "prometheus" created
prometheus/prometheus# 

prometheus/prometheus# kubectl get deployment,pod -n monitoring 
NAME                     DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deploy/grafana-core      1         1         1            1           16m
deploy/prometheus-core   1         1         1            1           1m

NAME                                  READY     STATUS    RESTARTS   AGE
po/grafana-core-9c7f66868-wm68j       1/1       Running   0          16m
po/prometheus-core-6dc6777c5b-5nc7j   1/1       Running   0          1m
prometheus应用的部署,简单描述下创建的内容:
1
2
    Deployment= prometheus-core   replicas: 1    containers=prometheus   image: prom/prometheus:v1.7.0    containerPort: 9090(webui)
    Service    name: prometheus   NodePort-->port: 9090 -webui

6、prometheus部署完了现在来部署它的agent,也就是采集器:

Prometheus/prometheus# ls node-directory-size-metrics/
daemonset.yaml
Prometheus/prometheus# ls kube-state-metrics/
deployment.yaml  service.yaml
Prometheus/prometheus# ls node-exporter/
exporter-daemonset.yaml  exporter-service.yaml
Prometheus/prometheus# 
#其中两个用的是daemonset

Prometheus/prometheus# kubectl create -f node-exporter/ -f kube-state-metrics/ -f node-directory-size-metrics/
daemonset "prometheus-node-exporter" created
service "prometheus-node-exporter" created
deployment "kube-state-metrics" created
service "kube-state-metrics" created
daemonset "node-directory-size-metrics" created
Prometheus/prometheus# 

Prometheus/prometheus# kubectl get deploy,pod,svc -n monitoring 
NAME                        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
deploy/grafana-core         1         1         1            1           26m
deploy/kube-state-metrics   2         2         2            2           1m
deploy/prometheus-core      1         1         1            1           11m

NAME                                     READY     STATUS    RESTARTS   AGE
po/grafana-core-9c7f66868-wm68j          1/1       Running   0          26m
po/kube-state-metrics-694fdcf55f-bqcp8   1/1       Running   0          1m
po/kube-state-metrics-694fdcf55f-nnqqd   1/1       Running   0          1m
po/node-directory-size-metrics-n9wx7     2/2       Running   0          1m
po/node-directory-size-metrics-ppscw     2/2       Running   0          1m
po/prometheus-core-6dc6777c5b-5nc7j      1/1       Running   0          11m
po/prometheus-node-exporter-kchmb        1/1       Running   0          1m
po/prometheus-node-exporter-lks5m        1/1       Running   0          1m

NAME                           TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
svc/grafana                    NodePort    10.254.231.25   <none>        3000:30161/TCP   26m
svc/kube-state-metrics         ClusterIP   10.254.156.51   <none>        8080/TCP         1m
svc/prometheus                 NodePort    10.254.239.90   <none>        9090:37318/TCP   10m
svc/prometheus-node-exporter   ClusterIP   None            <none>        9100/TCP         1m
Prometheus/prometheus#

--------
Prometheus/prometheus# kubectl get pod -o wide -n monitoring 
NAME                                  READY     STATUS    RESTARTS   AGE       IP             NODE
prometheus-node-exporter-kchmb        1/1       Running   0          4m        10.3.1.16      10.3.1.16
prometheus-node-exporter-lks5m        1/1       Running   0          4m        10.3.1.17      10.3.1.17

#这两个是exporter,用的是daemonset 分别在这两个node上运行了。这样就可以采集到所有数据了。

如上部署完成,以下是用自已的话简单描述下:

 node-exporter/exporter-daemonset.yaml 文件:
       DaemonSet=prometheus-node-exporter   
          containers: name: prometheus-node-exporter    image: prom/node-exporter:v0.14.0
          containerPort: 9100   hostPort: 9100  hostNetwork: true    #它用的是主机的9100端口

        Prometheus/prometheus/node-exporter# kubectl get  daemonset,pod -n monitoring 
        NAME                             DESIRED   CURRENT   READY     UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
        ds/node-directory-size-metrics   2         2         2         2            2           <none>          16h
        ds/prometheus-node-exporter      2         2         2         2            2           <none>          16h
           因为它是daemonset,所以相应的也会运行着两个Pod: prometheus-node-exporter

      Service=prometheus-node-exporter   clusterIP: None   port: 9100  type: ClusterIP   #它没有clusterIP

    # kubectl get  service -n monitoring 
    NAME                       TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    prometheus-node-exporter   ClusterIP   None            <none>        9100/TCP         16h
kube-state-metrics/deployment.yaml 文件:
      Deployment=kube-state-metrics replicas: 2   containers-->name: kube-state-metrics  image: gcr.io/google_containers/kube-state-metrics:v0.5.0 
                 containerPort: 8080

      Service     name: kube-state-metrics   port: 8080  #没有映射
                                 #kubectl get deployment,pod,svc -n monitoring                               
            NAME                        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
            deploy/kube-state-metrics   2         2         2            2           16h

            NAME                                     READY     STATUS    RESTARTS   AGE
            po/kube-state-metrics-694fdcf55f-2mmd5   1/1       Running   0          11h
            po/kube-state-metrics-694fdcf55f-bqcp8   1/1       Running   0          16h

            NAME                           TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
            svc/kube-state-metrics         ClusterIP   10.254.156.51   <none>        8080/TCP         16h
node-directory-size-metrics/daemonset.yaml 文件:
        #因为是daemonset,所以未定义replicas数量,直接运行在每个node之上,但是它没有创建service
      DaemonSet : name: node-directory-size-metrics  
                  containers-->name: read-du  image: giantswarm/tiny-tools   mountPath: /mnt/var   mountPath: /tmp
                  containers--> name: caddy    image: dockermuenster/caddy:0.9.3 containerPort: 9102
                               mountPath: /var/www   hostPath /var

        kubectl get daemonset,pod,svc -n monitoring 
        NAME                             DESIRED   CURRENT   READY     UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
        ds/node-directory-size-metrics   2         2         2         2            2           <none>          16h


        NAME                                     READY     STATUS    RESTARTS   AGE
        po/node-directory-size-metrics-n9wx7     2/2       Running   0          16h
        po/node-directory-size-metrics-ppscw     2/2       Running   0          16h

        NAME                           TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
                     没有node-directory-size-metrics的service

到此 prometheus算是部署完成了,最后来看下它暴露的端口:

Prometheus/prometheus# kubectl get svc -o wide -n monitoring 
NAME                       TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE       SELECTOR
grafana                    NodePort    10.254.231.25   <none>        3000:30161/TCP   31m       app=grafana,component=core
kube-state-metrics         ClusterIP   10.254.156.51   <none>        8080/TCP         6m        app=kube-state-metrics
prometheus                 NodePort    10.254.239.90   <none>        9090:37318/TCP   16m       app=prometheus,component=core
prometheus-node-exporter   ClusterIP   None            <none>        9100/TCP         6m        app=prometheus,component=node-exporter
Prometheus/prometheus#

7、访问、使用prometheus

如上可以看到grafana的端口号是30161,NodeIP:30161 就可以打开grafana,默认admin/admin

未分类

登录后,添加数据源:

未分类

添加Prometheus的数据源:

将Prometheus的作为数据源的相关参数如下图所示:

未分类

添加完后,导入模板文件:

未分类

未分类

未分类

部署完成。

使用Prometheus监控MySQL状态

Prometheus官方提供了mysqld_exporter,我们直接使用即可。

在每个要监控的MySQL中创建监控用户并授予权限。

CREATE USER 'exporter'@'127.0.0.1' IDENTIFIED BY 'XXXXXXXX' WITH MAX_USER_CONNECTIONS 3;
GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'exporter'@'127.0.0.1';
flush privileges;

mysqld_exporter也是用Go语言写的,安装十分简单,我们的环境MySQL有3个节点,使用ansible部署mysqld_exporter。 这里贴一下其中一个MySQL节点上生成的systemd的单元文件:

[Unit]
Description=mysqld_exporter
After=network.target
[Service]
Type=simple
User=prometheus
Environment=DATA_SOURCE_NAME=exporter:exporterpass@tcp(127.0.0.1:3306)/?loc=Local
ExecStart=/home/prometheus/mysqld_exporter/mysqld_exporter 
 -web.listen-address=:9104
Restart=on-failure
[Install]
WantedBy=multi-user.target
  • mysqld_exporter从环境变量DATA_SOURCE_NAME获取连接MySQL的dns信息,注意以前面我们创建的单独的监控用户
  • -web.listen-address设置mysqld_exporter的监听端口,默认为9104

接下来在Prometheus的配置文件中配置收集MySQL信息的Job和Instance,这里还是贴一下我们的配置文件片段,实际上这个片段也是有ansible编排生成的:

scrape_configs:
  - job_name: 'mysql'
        static_configs:
         - targets:
            - 192.168.1.11:9104
           labels:
             instance: db1
         - targets:
            - 192.168.1.12:9104
           labels:
             instance: db2
         - targets:
            - 192.168.1.13:9104
           labels:
             instance: db3

重启Prometheus之后,Prometheus就可以从mysqld_exporter中收集数据了。

在监控图表上我们使用的Grafana,因此可以直接使用percona grafana-dashboards提供的图表。